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SUMMARY

Optimisation of cylindrical and conical shells for elastic stability usually
leads to stiffened shells. The buckling behaviour of stiffened cylindrical shells
under various loads and load combinations is discussed with special reference
to eccentricity of stiffeners. Design implications of combined loads are con-
sidered and an optimisation procedure is proposed. Variation of stiffener
cross-section is studied as an approach to optimisation. For conical shells,
variation of stiffener spacing is investigated as another direction of improve-
ment in structural efficiency. Orthotropic shells are also considered briefly.
Finally, some of the results for closely spaced stiffeners are evaluated with
discrete stiffener theory.

SYMBOLS

a, h distance between rings and stringers for a
cylindrical shell

a  distance of the top from the vertex, along
a generator in a truncated conical shell,
(see Fig. 1)

a, -(a 0,1.-e), distance between rings for a
conical shell (see Fig. 1)

ao, defined by eqn. ( 12) when x= I
a„,b„ defined by eqns. (16) of ref. 25

A„, B„,C„ coefficients of displacements
A ,, A,  cross-sectional area of stringers and rings

respectively
d the width and height of rings in conical

shells
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FIG. 1 — Notation

D =Eh3/12(1— v2)

OP) function of the taper ratio of a cone

= 1—(R,IR2), given in ref. 12

h thickness of shell
h thickness of equivalent weight shell

42 moment of inertia of a ring cross-section
about the middle line of the sheet

plate factor in plate buckling formula
N„=K(TE2Dia2)

k1,k2,k3,k4 defined by eqns. (14) to (18)
/ = a(x2— 1) (see Fig. 1)

length of shell between bulkheads
n number of half longitudinal waves

N• critical axial load per unit circumference
p hydrostatic pressure

p0"t, pi" critical pressure for outside and inside
stiffeners

pv.s. lateral pressure for uniform and non-
uniform stiffening
axial load

tl 4.14*Z
z*,vd*

detail

of


rings

Xe

Apo for cone. or
b for cylinder

1 detail of
stringers
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pou t, pin axial load for outside and inside stiffeners

Pv.s. axial load for uniform and non-uniform

stiffening

rp defined by eqns. (4)

R, R,, R2 radius of cylindrical shell, and radii of
small or large end of truncated cone

respectively

t  number of circumferential waves
u, v,  w non-dimensional displacements, in

cylinder  u=(u*I R), v=(v* R)  and
w  R)(see  Fig. 1)

z*, (/)  axial co-ordinate along a generator, radial


and circumferential co-ordinates
.v non-dimensional axial co-ordinate,

x=(x*Ia) for a conical shell, x= (x*/R)

for a cylindrical shell

x2 ratio of the distance of the bottom of a
truncated cone from the vertex, to that of

the top

= [(1 + x2)/2]
Z =(I —12 )12(1,1 R)2(R 1h)

=Z/(1021ah3)
a cone angle

=(nRIL)

variation ratio, the ratio of weight of
uniform part of stiffeners to total stiffener

weight defined by eqn. (12)

got,  'hi,  Pi, /.1 changes in stiffnesses due to constant

110 2, qt.?, /12 . 1 2 stringers and rings defined in refs. 13, 14,
18 and 25

Ci(x), q(x), p;(x 1), y; (x)  changes in stiffnesses due to stringers and

C2'(x),  ir(2.(x),1772(x),  PZ(x), y(x) rings varying in the x direction

defined by eqn. (23)

I/2,  effective mean bending stiffness of the
rings (eqn. 20)

=(PRInD)

=(R3 D)p

defined by eqns. (4)

1' Poisson's ratio

pa„ =  [(R, + R2)I2  cos 7], average radius of
curvature for a truncated cone

pa,  average radius of curvature for a sub-shell
tif =I — (ft i/R2), taper ratio

7112
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I. INTRODUCTION

Optimisation of the structural elements is a basic requirement in the design

of aerospace vehicles. Extensive research efforts have therefore been directed

not only towards refinement of structural analysis but also towards methods
of minimum weight design, as is evident from Gerard's recent authoritative

survey" ). Buckling is the most probable mode of failure in aerospace
structures and hence optimum design of aeronautical structures is mostly
optimisation for stability. To-day this statement can also be extended to

missiles and boosters. Whereas the shells of early missiles were pressure
critical, advances in materials and technology have reinstated instability as

the dominant criterion also in this branch of aerospace structures'''.
If one investigates the structural efficiency of thin shells, one finds that the

prescribed typical dimensions for both aircraft fuselages and missiles usually

eliminate monocoque shells as contenders for optimal configurations. This
has been shown for cylindrical shells in bendine', for cylindrical shells under

axial compression and spherical caps under external pressure' 2•3', for

cylindrical shells under external pressure') and for conical shells under
external pressure'''. For optimisation one has, therefore, to turn to stiffened

shells.
The structural optimisation of stiffened cylindrical shells has recently been

studied by many investigators(' 11) and that of stiffened conical shells has

also been investigated in detail. These studies yielded important con-
clusions. In their aim to arrive at simple methods of optimisation, however,

some investigators have made assumptions which cannot be fully justified.

The authors of this paper believe that, although the final goal is minimum

weight, a better understanding of the behaviour of stiffened shells under

different loading conditions is needed to make optimisation procedures more
reliable. Hence, the results of recent studies on the behaviour of stiffened

shells are discussed before optimisation procedures are considered.

In aerospace structures, stiffened shells generally refer to shells stiffened
geometrically with stringers and rings. Other practical methods of improving

the structural efficiency of a shell in buckling are corrugated sheet, sandwich

construction and orthotropic materials.
Sandwich construction, extensively studied by other authors" but not

discussed in the present paper, shows great promise as an optimal configura-
tion of shell structures'', though the predicted weight saving potentials have

not yet been fully realised. Directional variation of material properties as in

orthotropic shells, can usually not compete with geometrical stiffening in
optimisation for stability. But since non-structural design requirements some-

times demand monocoque configuration, orthotropic construction may be
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optimal. Furthermore, since orthotropic construction is often advantageous
for internal pressure loading, possible weight savings under stability critical
loadings are of interest and orthotropic shells are therefore discussed briefly.
Corrugated shells are usually analysed as orthotropic or stiffened shells and
only as such are they included here.

Now in stiffened shells the major topic of the paper — the effectiveness
of the stiffeners is determined by the following geometric parameters: spacing,
shape, cross-sectional area and eccentricity.

The maximum distance between stiffeners is determined by the local
buckling strength of the sub-shell between stiffeners. When the local conditions
of all the sub-shells are similar, equal stiffener spacing is appropriate. But
when the local conditions differ, unequal spacing may be preferable. For
example, in a ring-stiffened conical shell under uniform external pressure(12%
or in a rirw-stiffened cylindrical shell under longitudinal varying axial loads
(such as would be produced by the weight of the solid propellant in a rocket)
non-uniform stiffener spacing is preferable. It should, however, be pointed
out that the stiffener spacing discussed here, although optimum from the
local instability point of view, is not necessarily the optimal spacing for
minimum weight.

The shape of the stiffeners is very important since it determines their
bending and torsional stiffness. The dominant influence of the bending stiff-
ness is self-evident, but calculations for stiffened cylindrical shells covering a
wide range of geometries(13.14) also brought out the importance of the
torsional stiffness under axial compression and torsion.

The cross-section of the stiffeners is usually constant for the whole shell.
But noticeable weight savings may be possible by variation of stiffener cross-
section along the shell, as has already been pointed out in ref. 15. The
effect of variation of stringer cross-section under axial compression and
of variation of ring cross-section under hydrostatic pressure is therefore
studied.

The eccentricity of the stiffeners may have a considerable effect on the
buckling load of a shell. Although already noticed in 1947(1(", the importance
of the eccentricity effect has only lately been realised with the introduction of
heavily stiffened shells in launching vehicles. Many investigators have
recently studied this effect (see bibliography in ref. 14), and the authors have
shown a physical explanation of the eccentricity effect under external pressure
and axial compression' 14.18). Outside stiffeners usually stiffen the shell more

than inside ones, but there are many cases when the opposite is true, and for
certain shell geometries an inversion of the eccentricity effect occurs. This
behaviour has a noticeable influence on the optimisation of stiffened shells.
Furthermore, for different loads, different eccentricity effects are observed
and have to be included in the analysis of buckling under combined
loads.
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2. UNIFORMLY STIEFINED CYLINDRICAL SHELLS

The buckling behaviour of ring-stiffened cylindrical shells under hydrostatic
pressure and the current methods of analysis for buckling between rings and
general instability are summarised in ref. 17. The general instability be-
haviour of stiffened shells under lateral and hydrostatic pressure is recon-
sidered in ref. 18with emphasis on the influence of the eccentricity of stiffeners.
The difference between buckling under lateral and hydrostatic pressure is
stressed there, and it is pointed out that hydrostatic pressure is actually a
particular case of combined loading with the corresponding possible buckling
mode change. Whereas under lateral pressure, ring-stiffened shells always
buckle with one longitudinal wave and many circumferential waves, under
hydrostatic pressure a different buckle pattern with many longitudinal waves,
which often is also axisymmetric, can appear. The transition from the
n=1  mode to the  n01  mode occurs when the axial stress component due to
the hydrostatic pressure becomes dominant in short shells, or in shells with
very stiff rings.

For both types of loading, rings are usually the most effective stiffeners. For
hydrostatic pressure, however, a combination of rings and stringers may
sometimes be more effective, when the stringers postpone the transition to
the  n01  mode. In short shells, outside rings yield higher critical pressures. As
the shells become longer, or more precisely as the shell geometry parameter

z=0
1/2 U. 2-v2,

)
, - 1R11) increases, an inversion of the eccentricity effect occurs

and inside rings are stronger. For lateral pressure loading, the inversion of
the eccentricity effect is practically independent of the geometry of the rings
but depends very strongly on the shell geometry. For hydrostatic pressure, the
inversion also depends primarily on the shell geometry but the bending
stiffness of the rings affects it too. The reason for this difference in the
eccentricity effect under lateral and hydrostatic pressure is the transition
from the  n=  I buckling mode to the  n01  mode under the latter loading. This
transition, which affects the inversion, depends on the moment of inertia
of the rings, /02. Hence if the geometry of the shell is represented by the
Batdorf parameter  Z,  a well defined 'range of inversion' which spreads
between 100 <Z <500, is found for lateral pressure loading. For hydrostatic

pressure, a similar range of inversion can be found when a modified shell
parameter 7= Z1(1021(7113), which accounts for the dominant ring property, is
employed instead of  Z.  In Fig. 2 (reproduced from ref 18), the ratio of
(pOU'l p'),  where  pi"  is the critical pressure for inside stiffeners and  p""`  that
for outside ones, is plotted against Z. The discontinuities in the curves
indicate transition from the  n=1  buckling mode to the  n01  mode. The range
of inversion is well defined. When 7<35 outside rings are more efficient
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whereas for 2 > 65 shells with inside rings are stronger. For lateral pressure,
the variation of  (pout le)  with Z is given in ref. 18. For stringer-stiffened shells,
no inversion of eccentricity effect occurs under lateral loading, and under
hydrostatic pressure an inversion may appear only in extremely short shells.
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Flo. 2 — Variation of eccentricity effect with modified shell parameter Z

for hydrostatic pressure loading. (Reproduced from Ref. 18)

Hence in practice, outside stringers are always better than inside ones for
both types of loading.

Under axial compression, stiffeners play an even more important role in
stabilising cylindrical shells. Unstiffened cylinders buckle at axial loads much
below those predicted by classical linear theory. These very large discrepan-
cies between experimental and theoretical buckling loads are attributed
primarily to the post-buckling behaviour of axially compressed cylindrical
shells and their imperfection sensitivity, and to a lesser extent to the influence
of their boundary conditions  (see  for example ref. 19 for an up to date
account). Closely stiffened cylinders under axial compression, on the other
hand, show good agreement between experiment and linear theory( 20,21,14).

The main stability contribution of stiffeners in this case is, therefore, the
raising of the buckling load to the classical one, and the improvement of the
structural efficiency within the framework of the behaviour predicted by
linear theory, as in the case of external pressure, represents an additional gain.
The results of ref. 14 show that even within linear theory stiffened shells are
usually more efficient than unstiffened ones. Stringers are in general much
more effective than rings in this function. Actually, a combination of stringers
and rings is optimal as is shown in the calculations of the present paper as
well as in refs. 9 and 11. The eccentricity effect is very pronounced in axially
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compressed stringer-stiffened cylinders and spectacular results have been
observed also in tests(22). Again, the eccentricity effect depends very strongly
on the geometry of the shell, represented by the Batdorf parameter, while the
geometry of the stringers only influences its magnitude. In Fig. 3 (reproduced
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FIG. 3 -- Variation of eccentricity effect under axial compression with

shell geometry and boundary conditions. (Reproduced from Ref. 14)

from ref. 14) (P""'/Pi") is plotted against  Z  for simply-supported and clamped
shells. An inversion of the eccentricity effect can again be observed, but here
it occurs for extremely short shells. For all practical geometries, outside
stringers yield higher buckling loads than inside ones. The designer should
note that the eccentricity effect has a pronounced maximum which occurs
for values of  Z  which are common in aerospace practice. This maximum and
the shape of the curve are the result of the interplay of the two opposing
contributions which make up the total eccentricity effect, discussed in detail
in ref. 14. Figure 3 also shows that the eccentricity effect is approximately
similar for clamped ends and simple supports (only two classical sets of
boundary conditions out of the 8 possible supports are considered) and differs
mainly in the position of the maximum and its magnitude.

In ring-stiffened cylinders the eccentricity reduces the buckling load with
inside rings, whereas with outside rings the axisymmetric pattern, that is not
influenced by eccentricity, dominates.

A recent study of the imperfection sensitivity of shells(' r", maintains that
some of the advantages of outside stringers predicted by linear theory, may
not be materialised because of increased imperfection sensitivity that appears
in shells with outside stringers over a substantial range of  Z.  This would mean
that the additional gain by placing stringers outside is offset by a loss of not
achieving linear theory buckling loads that one can usually expect for closely
stiffened shells. Experiments so far(' do not seem to support this fear.
Moreover, the addition of rings to the stringer-stiffened shell under axial
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compression, advocated also by efficiency considerations of linear theory,
should improve the situation due to the more stable post-buckling behaviour
in the presence of rings" I24).

The authors, therefore, feel that for the closely spaced stiffeners that are
needed for minimum weight configurations or optimal designs in their
vicinity, linear theory should adequately predict the buckling loads, and the
assumption of identical imperfection sensitivity for stiffened and unstiffened
cylindrical shells under axial compression employed in refs. 9 and It appears
too conservative.

In order to obtain a realistic evaluation of the total effectiveness of stringers
as stiffeners of axially compressed cylinders, one should, therefore, apply an
empirical correction factor to unstiffened shells and use linear theory for
the stiffened ones. This was done in ref. 14 and the 'corrected' structural
efficiency of the stringer-stiffened shell is much higher than the uncorrected
one that uses linear theory throughout. It is found that outside stringers are
always more effective than equivalent thickening of the shell, irrespective of
shell geometry, whereas inside stringers may be inferior to equivalent thicken-
ing for certain shell geometries.

The general instability of stiffened cylindrical shells under torsion is con-
sidered in detail in ref. 13. Rings are more efficient than stringers except for
short shells. Large eccentricity effects are found for rings, and an inversion of
the eccentricity effect occurs in the range of 1000<Z <4000.

3. COMBINED AXIAL COMPRESSION AND EXTERNAL
OR INTERNAL PRESSURE

During the mission of a launch vehicle or missile it is subjected to com-
binations of axial and pressure loads. The general instability behaviour of
stiffened cylindrical shells under combined loads is therefore studied. The
analysis employs linear Donnell type equations and is an extension of that
given in refs. 25 and 14. For classical simple supports, the third stability
equation, eqn. (18) of ref. 25, becomes for axial compression and external or
internal pressure,

—n3113a„)+ —21' — 1)„13)+ (1 + 110,)114fl4 +(2 + +P) a»?
2/3212

( +1/02 + I 2( R/Ii)2[( I +/(2)(1 + h„t)+ vn ;1.(/12 /32 /2)

— 24(n2/12/2)+ t2 ] = 0 (I)

where  (PR/7ED)  and ;tp = (R3ID)p (2)

n is the number of axial half waves, t the number of circumferential waves,


Pt, Ii2, Ilo 1, 1/02, titt and th2 are the changes in stiffnesses due to stringers and
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rings, Xi , Y ( and 2 are the changes in stiffnesses caused by the eccen-

tricity of the stringers and rings, as in ref. 25, and a„ and I?„are given by

eqns. (16) of ref. 25. When one of the load parameters, say 21, is given, the

second, say 2, is calculated from eqn. (1). Note that in eqn. (2) positive p
represents external pressure and negative p internal pressure.

Computations have been made for many typical shells covering a wide
range of shell and stiffener geometries. The details are given in section 3 of

ref. 26. Here the relative efficiency of stringers and rings and their position is
investigated for two typical shells, with  (LI R)= 2-0 and 0.5, (10)=1000 and a

stiffener weight ratio (ratio of total weight of the stiffened shell to that of the

unstiffened shell) (h1h)= 1.5 and 2.0, where h is the equivalent thickness of the

stiffened shell and h is the wall thickness of the unstiffened shell

(h1h) = [1+(A bh)+(A2lah )] (3)

The interaction curves for combined axial compression and external or

internal hydrostatic pressure consist essentially of two straight lines that
represent two different buckling modes, one with one longitudinal half wave,

n=1, and one with many longitudinal waves, n01. Unstiffened cylindrical

shells under the same combined load exhibit a similar behaviour. There the
transition from the n=1 mode to the n01 mode occurs very near the zero

pressure axis (it is sometimes assumed that this transition occurs exactly at

the zero pressure axis, whereas actually it occurs at a small positive pressure  —

see  ref. 27 — but still very near the zero pressure axis). In stiffened cylindrical

shells, on the other hand, the transition appears at different places along the

pressure axis depending on the stiffener geometry  (see  Fig. 4). Hence the

interaction curves for stiffened and unstiffened shells differ considerably in
shape and nature, and one cannot assume that the same interaction applies

to both types of shells, as in ref. 10.
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In Fig. 4 the weight ratio (MO= 1.5 is kept constant and interaction curves
are shown with different fractions of the stiffener area allocated to rings and
stringers. The most effective distribution of stiffener material for uniformly
spaced and constant area rings and stringers can be found from Fig. 4 for any

zo

t.
L/R • 2.0RA" .1000Figt.1.5

- stringers and rings outside
---- stringers outside, rings inside

stringers and rings inside

............  1

1.5
UNSRFFENED EOLRALENT

1


UNSTIFFENEDas

-g2 -0.1
1

02 0.3 04
1 	 IA 	
05 0.6 07

1)-4106

I

FIG. 5 — Interaction curves for most efficient distribution of

stiffener material

combination of axial load and pressure. There is an interplay between the
stiffening contribution of stringers and rings. The longitudinal stiffening of
stringers postpones the n0 1 buckling mode. Since higher critical axial loads
correspond to the n=1 mode than to the n01 mode, the interaction curve is
raised, or in other words for a certain pressure a higher axial buckling load is
attained. On the other hand, since increase in stringer area decreases that of
the rings, and therefore the resistance to lateral pressure is reduced, the inter-
action curve shifts to the left. Along the pressure axis, the conclusions of
ref. 18 that rings are the most effective stiffeners under hydrostatic pressure is
reconfirmed, and along the axial compression axis a combination of about
half the stiffener area allocated to rings and half to stringers is found to be
most effective. (A similar conclusion is arrived at in ref. 9.)

It should be recalled here that the superiority of rings alone for stiffening
against hydrostatic pressure does not always hold. As discussed earlier, two
modes appear in buckling under hydrostatic pressure. Hence for certain
values of Z, for which the n01 buckling mode would appear with rings only,
the addition of stringers of very small area may suffice to cause transition to
the n= 1 mode and result in considerable increase in buckling pressure. For
example, in Fig. 6, allocation of 2.5% of the total weight to stringers (inside
rings and outside stringers) raises the buckling pressure by 47 and in Fig. 7
allocation of 1.3 % of the total weight to stringers (rings inside and stringers
outside) raises the critical pressure by 42 %. It may be recommended therefore,
that, when the modified stiffened shell parameter Z <65, stringers be added
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to a ring stiffened cylinder under hydrostatic pressure even at the expense of
the ring area.

If the shell is stabilised by internal pressure, stringers are found to be the
most efficient stiffeners. This is clearly seen at the left hand side of Figs. 4, 6
and 7, where the interaction curves for stringers only rise very rapidly with
internal pressure and exceed those for stringers and rings. This is not sur-
prising, since the internal pressure stabilises the shell mainly in the circum-
ferential direction, and hence additional longitudinal stiffening is more
important.

The influence of the position of the stiffener on the interaction curves is
shown in Figs. 5 and 7. The curves shown are envelopes of the interaction
curves for different weight distributions between stringers and rings for a
constant stiffener weight ratio OA= I.5. These envelopes represent the
maximum axial buckling load that can be attained with a given weight of
stiffened shell for any hydrostatic pressure below the critical. The most
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efficient configuration for most of the range of combined loads is that with
both stringers and rings on the outside. This could be expected from the
behaviour of a stiffened shell under separate loads114.18). Stringers are the
main stiffeners against the axial load component, and outside stringers are
more effective than inside ones over the entire practical geometry range. For
rings, on the other hand, which are the main stiffeners against the lateral load
component, outside rings are more effective only in shells with small Z, and
the eccentricity effect inverts as  Z  increases. Hence the conclusion that shells
with rings and stringers on the outside are most efficient, holds for the entire
range of combined loads only in short shells  (see  for example Fig. 7 where
2=  13-6), whereas for long shells, inside rings and outside stringers are more
efficient at the pressure end of the interaction curves.

It should be pointed out that the eccentricity effects for combined stiffening
or combined loads are smaller than those corresponding to one type of stif-
fener only and separate loads. For example, in Fig. 7 at the axial compression
axis,  (P"/Pi")  for stringers only is about 1.38, whereas for combined stringers
and rings of equal area (P""'/P'") is 1.28. Or at about the middle of the inter-
action curve, at  (1)1E)— 0.8 x 10, (P""'IP") is 1.55 for  (A 2Iah)=0.4  and
(A 11 hh)=0.1.  This reduction in eccentricity effect is due to the presence of
both rings and stringers, whereas only either rings or stringers — depending
on the dominant load - - are directly influenced by the eccentricity effect.

The structural efficiency of stiffening is indicated in Figs. 5 and 7, by a
comparison with equivalently thickened shells. The very large increases in
buckling loads attained by stiffening, re-emphasise the relative inefficiency
of monocoque shells. The fact that buckling loads for monocoque shells often
fall much below the prediction of the linear theory considered here, whereas
stiffened shells usually carry the 'linear' loads, discredits the monocoque shell
even further.

4. OPTIMISATION PROCEDURE FOR COMBINED LOADING

The analysis of the previous section lead to the conclusion that under com-
bined axial compression and hydrostatic pressure some combination of
stringers and rings represents the most effective stiffening against buckling.
An optimisation procedure for combined loading is now proposed.

If one considers general instability, a typical interaction curve for a certain
combination of rings and stringers is represented by the dotted line in Fig. 8(a).
Point  A  represents the buckling mode transition and indicates the ratio of
axial compression to hydrostatic pressure for which this stiffener configura-
tion is most efficient. The part of the curve to the left of  A  can be approxi-
mated, with a slight conservative error, by a horizontal line. Considering local
buckling between rings, one can draw some general conclusions about it from
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actual interaction a:ye for general instabdity7
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FIG. 8 - — Optimisation procedure for combined loading

interaction curves like Figs. 4, 6 and 7. Local instability of sub-shells cor-
responds to buckling of shells stiffened by stringers only, or of unstiffened

shells, which are observed to have interaction curves with the steepest slopes.

Hence, if the part of the interaction curve in Fig. 8(a) to the right of A is
approximated by a vertical line from  A.  this conservative approximation

includes also the worst shape of interaction curve from the point of view of
local buckling between rings. Local instability between stringers is essentially

buckling of an unstiffened panel under combined load, for which the pro-

posed approximate interaction curve is conservative.

Now consider a set of given ratios of axial compression and hydrostatic

pressure as may occur in a typical mission of a vehicle. With the simple

approximate interaction curve arrived at in Fig. 8(a), a single point B can
immediately be found that covers all the actual combined loading conditions

(Fig. 8(h)). Since the approximate interaction curve is conservative through-
out, one is certain that the configuration that carried the load combination at

B will be at least strong enough for all the actual combined loads. Hence the

minimum or optimum weight problem of many combinations of axial corn-
pression and hydrostatic pressure is reduced to that of a single ratio of loads.

A minimum or optimum weight analysis similar to that given in refs. 9 and

I l for separate loads, can now be done for the load ratio represented by

point B in Fig. 8(b). The load terms in eqn. (1 ) are changed to represent the

manner in which point B of Fig. 8(h) is reached by loading with a constant

Nx
ER

approximate interaction

curve
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load ratio. A new load parameter 2r is introduced in eqn. (1) defined by

=  ra;,, and 1p = rp1r (4)

where ra and r,, are coefficients representing the given ratio of 2 and 1p

Equation (1 ) becomes

‘>1(— /33 a„)+ —212 — b„13) + (I F flo i)n4 134 + (1 +1102)t4

+ (2 + ii, +11,2)n2/3212 + 12(R/ h)2[(1 + 112)(1+ b„t)+ vnflad

;,,{[(r„+ r„)/2]n2112+ ri,t2l = 0 (5)

The limiting cases of separate loads are given by the following values of the
coefficients:

ra= 1, r,,=  0 represents axial compression,

ra= 0,  rp = 1 represents external hydrostatic pressure,

ra=  —1,  rp=  1 represents external lateral pressure.

In combined loading, it is convenient to adjust the definition of the coefficients
according to the dominant load.

When the axial compression P is dominant

	

ra  = 1 and r,,= (pirfe P)  (6)

and then = Ar  and A,, =  (P7R21 P)2, (7)
Or, when the hydrostatic pressure is dominant,

= (2/2,,) = (PI mrR2) and r „ =  1 (8)

and then 2 = (PI p7R2)2r and 2,,  = Ar (9)

With these definitions the optimisation procedure for the combined load B
is identical to that of a given separate load, since the definitions ensure loading
along the line 0 B, and the methods of refs. 9 and 1I can be directly applied.
It should be pointed out, that on account of the conservatism of the approxi-
mate interaction curve, the resultant configuration is slightly heavier than the
optimal. Furthermore, the difference in the applied stress for local instability
calculations under axial compression and hydrostatic pressure, discussed
below in connection with the optimisation of conical shells, complicates the
local buckling calculations. The procedure, however, makes optimisation at
all feasible, since it yields a single criterion for a variety of load ratios that
actually have interaction curves of different shapes.

5. VARIATION OF STIFFENER CROSS-SECTION

General instability in uniformly stiffened cylindrical shells under external
pressure, axial compression or torsion usually occurs with one half-wave in
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the axial direction' 13.14'8', notable exceptions being ring-stiffened cylinders

under axial compression and short ring-stiffened cylinders under hydrostatic

pressure. With the usual n=1 pattern, a logical approach to increase in

structural efficiency is variation of stiffener rigidity along the shell in accor-

dance with the buckling deflection. Since local stiffener instability is rarely

a design criterion, the reduction in stiffener buckling strength is not con-

sidered. It is also assumed that the influence of stiffener rigidity on local shell

instability is small (and for the case of hydrostatic pressure this assumption is

justified in the next section) and therefore the change in this small effect may

be disregarded. A detailed study of the general instability of simply-supported

cylindrical shells with non-uniform stringers under axial compression and

with non-uniform rings under hydrostatic pressure is given in ref. 28. The

analysis uses the same model of a shell with 'distributed' stiffeners as refs. 25,

14 and 18. The constant changes in stiffnesses p1 to are replaced by

'starred' quantities p;(x) to i',',*(x) which are continuous functions of x that

have a maximum at the shell mid-length.

As a solution of the three stability equations (identical with eqns. (12) of

ref. 25 except for the different stiffness terms which are functions of .v) dis-

placement series of the form

	

ii = sin tO A„ cos iifix
n=1

	

= cos t(i) B„ sin ii/ix (10 )

	

= sin 10 C„ sin nfix

are assumed. Each term of eqns. (10) satisfies the classical simple-support

boundary conditions. In the general case of non-uniform stringers and rings

none of the three stability equations are actually solved by eqns. (10). Hence

two alternative methods of approximate solution are used: a straight-

forward Galerkin method and a method involving 'correcting coefficients'

and minimisation of 'error loads' used in ref. 29 for stiffened conical shells.

The two methods are discussed and compared in ref. 28.

The practical aim of the study is an evaluation of the possible weight

savings by variation of stiffener area. If one considers stiffeners of rectangular

cross-sections, the non-uniformity can be achieved by variation of stiffener

height or width. Though height variation is clearly more effective, because

stiffener moment of inertia is changed to the third power and the eccentricity

is also affected, whereas width variation only changes the moment of inertia

linearly and does not affect the eccentricity, the latter form of area variation

may sometimes be the only practical possibility. Hence both forms of varia-

tion are studied.
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For stringer-stiffened shells under axial compression two examples of height

variation are considered: sinusoidal and linear  (see  Fig. 9). As the radial

displacement of the uniformly stiffened shell varies sinusoidally, sinusoidal

variation seems promising, whereas linear variation is obviously preferable

for production. A mathematical analysis shows, that from the point of view of

2 2

STRINGERS-LINEAR HEIGHT
VARIATION

t
do

STRINGERS-SINUSOIDAL HEIGHT t.
VARIATION

STRINGERS
WITH I-EIGHT
VARIATION

751-1»fij
R

I I-

(c)RINGS \MTH WP3TH NARIATION

FIG. 9 — Types of stiffener area variations

general instability alone (in the single half-wave mode), concentration of the

entire stringer area at mid-shell would be most efficient. Considerations of

local buckling and of a possible two half-wave general instability mode,

however, eliminate any practical significance of this result. Furthermore,

considerations of local instability eliminate 'pure' variations of cross-section

that would yield zero stringer area at the ends of the shell. Hence the varying

part of the stringer is supplemented by a uniform part.

In Fig. 10 the ratio of critical axial load for stringers with sinusoidally

varying cross-sectional area to that for equal weight uniform stringers

(Pv.s.1Pc.,.)is plotted against  Z.  The stringers considered are fairly heavy,

equivalent to uniform stringers with (A1lhh)= 0.5 and (e11h)= +10, as used

in large boosters. The gains in critical load obtained by variation of stringer

area are in general larger for shorter shells. Gains up to 33 `,%', are seen in

Fig. 10. Different 'variation ratios' y (the ratios of the weight of the uniform

part of the stiffeners to the total stiffener weight) are plotted. y = 0 (no uniform

part) is clearly an inefficient configuration, since the excessive weakening of

the stringers causes transition from a single half-wave buckling mode to a

many half-wave mode. The shell will then buckle in a number of bays, and

as the bays near the ends are now 'understiffened', the buckling loads are
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FIG. 10 — Influence of sinusoidal height variation of stringers on buckling

load (axial compression)

lower with y=0. The (P,..,JP,.„) ratio may even drop considerably below
unity, as is seen in Fig. 10. y =0.25 yields much better results and  7 =0-5
appears to be roughly optimal, except for very large  Z.  Increases of 20-30 (,)/0
in buckling loads, can be achieved in practical configurations.

The decrease in (P,..,.1Pc.j at large  Z  is the result of the reduction in
structural efficiency of all stringers in long shells (discussed in ref. 14„see
Figs. 6 and II there). The influence of the position of the stringers on
(1),..,.1P,.,.)should be noted. In short shells inside stringers yield higher
(P,..,JP„.) ratios than outside ones, whereas in long shells larger gains are
observed with outside stringers.

Linear and sinusoidal height variations are compared in Fig. 11, for out-
side stringers. With the approximately optimal variation ratio  y =0-5,  linear
height variation approaches the efficiency of sinusoidal variation, and for
y =0.75 linear height variation is even slightly more efficient. Since linear
height variation presents less manufacturing problems than other forms, the
15-25% gain in buckling load seems promising. Some additional weight
savings may be achieved by optimisation of the variation ratio  y( 28), and a
comparison between linear and sinusoidal height variations indicates that
the optimal  y  for linear variation is slightly larger than that fora sinusoidal one.

Q9
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In Fig. 12the effect of eccentricity on the (P,.,.11=',.,.)ratio is investigated for
sinusoidal height variation. The eccentricity of the equivalent uniform stringer
is varied for constant weight  (A ,IM)=0-5 and constant y = 0.5. Increase in the

elhlr-10
oybh=5

sinusoWal

 linear

1=05

1.1
/

7=025
/ I

11.0.75

tO

as
10 2 4 6 8 102 2 4 6 8 103 2 4 z 6

FIG. 11 — Comparison of structural efficiency of linear and sinusoidal

height variation of stringers
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1.3
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FIG. 12 — Effect of eccentricity on the relative structural efficiency of

stringers with sinusoidal height variation
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eccentricity is seen to increase the gain in structural efficiency possible with

stiffeners of varying height. In practice, one has, however, also to check the

section of maximum height for local buckling. Local buckling and other

design considerations may obviously limit the feasible (e1111).
The gains in structural efficiency obtained with sinusoidal height variation

in ring-stiffened cylindrical shells under lateral pressure are indicated in

Table I. Some typical shells with fairly heavy rings, equivalent to uniform

rings of (A 2Iah) = (e2110= +5, are considered. 30-70 % gains in critical

lateral pressure are found. Height variation of rings appears, therefore to be a

promising approach to optimisation under lateral pressure. Width variation

of rings is obviously less effective. Nevertheless, gains in critical pressure of

20-30 "„ are obtained for typical shells with = 0.

It should be noted, however, that weight savings for a given load are less

spectacular than the gains in critical load for a given weight (see ref. 28) — a

result encountered in any optimisation study.

TABLE I


STIFFENED CYLINDRICAL SHELLS WITH RINGS OF

SINUSOIDAL HEIGHT VARIATION

Position L R
of rings R h Pc .s.

	

0.5 50 11.9 0.50 1.34

	

0.5 500 119 0-25 1.33

	

0.5 500 119 0.50 1.30

in 1.0 1000 954 0.25 1.38

	

3.0 1000 8580 0.44 1.47

	

4.0 2000 30,500 0-25 1.67

out 4.0 2000 30,500 0 -25 1.69

6. OPTIMISATION OF CONICAL SHELLS WITH


NON-UNIFORMLY SPACED RINGS

In ring-stiffened conical shells under hydrostatic pressure the local con-

ditions of the sub-shells differ, and hence unequal stiffener spacing may be

more efficient. The optimum configurations of conical shells with uniformly
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and non-uniformly spaced rings of rectangular cross-section are therefore
studied and compared.

Before one embarks on an optimisation study one should scrutinise the
assumptions to be used. One of the commonly used assumptions in the
analysis of the local instability in a ring-stiffened cylindrical or conical shell
subjected to hydrostatic pressure appears then to be unjustified and hence
warrants a detailed discussion.

In a stringer-stiffened cylindrical shell subjected to axial compression, the
load is shared by stringers and skin, and the axial stress is the load divided
by the total cross-sectional area of skin and stringers. When this stress
reaches the critical stress of the curved panel between two stringers, usually
considered simply-supported, local instability has occurred. The local
buckling in the corresponding case of a ring-stiffened cylindrical shell under
lateral or hydrostatic pressure does not represent an obvious extension of
that in the axially loaded stringer-stiffened shell, due to the different manner
of load application.

Consider first lateral pressure loading. If the rings are very stiff relative to
the sub-shells they will practically not distort and the sub-shell behaves like a
simply-supported cylindrical shell. The applied circumferential membrane
stress is then o-4,=(pRlh), where h is the thickness of the skin, and the shell
prebuckling stress is not noticeably relieved by the stiffeners, as it was in the
case of the axially loaded stringer-stiffened shell. The difference between the
two cases becomes obvious if one imagines perfectly rigid stiffeners. No
buckling is then possible in the axially compressed stringer-stiffened shell,
provided rigid end rings transmit the load, whereas in the ring-stiffened shell
under lateral pressure the buckling of the sub-shells is hardly affected, except
for slight changes in the boundary conditions. These boundary effects, caused
by increase in ring stiffness, consist of an effect on the prebuckling deforma-
tion investigated in 1932"0) and reconsidered recently in a more precise
manner(3"2), and of a rotational restraint effect during buckling(3". The
prebuckling deformation effect increases the buckling pressure noticeably
only in extremely short shells, whereas the rotational restraint during buck-
ling may be appreciable even for sub-shells with Z up to 10.

Minimum-weight analyses(") yield configurations with many closely
spaced rings. The buckling behaviour of the resulting very short sub-shells
approaches that of a long flat plate("). For lateral pressure the limiting case
is a plate loaded by (74, and the corresponding plate factor K=4. Though the
very small length of the sub-shells will augment the boundary effects, this
increase will not be directly proportional to the area of the rings. Hence the
assumption (used for example in ref. 5) that the applied stress for local
buckling is co=(pRlh) where h is the equivalent thickness of the stiffened
cylindrical shell, h=h[1+(421ah)], does not appear justified for ring-
stiffened cylindrical shells under lateral pressure. This assumption is even less
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justified for hydrostatic pressure loading. The buckling behaviour of very
short sub-shells under hydrostatic pressure again approaches that of a long
flat plate(33). Now, however, the limiting case is a plate loaded in two per-
pendicular directions by o-4,and o-,=(pRI2h). An analysis of such a plate
shows that for a long plate the axial stress component becomes dominant. As
the plate lengthens, a buckling pattern of a plate free at the short ends is
approached, with the plate factor K=1. The conclusion reached in ref. 31,
that very short shells with Z < 1.89 buckle axisymmetrically under hydrostatic
pressure has essentially the same meaning. Only affects axisymmetric
buckling (or Euler type buckling in the case of the long plate). Hence the
rings cannot affect local buckling, except for some rotational boundary
restraint, which again can only be very small with the rings of small torsional
stiffness considered here. The assumption that the applied stress depends on
the equivalent thickness for hydrostatic pressure loading used in refs. 5, 6, 7
and 8, is therefore not justified.

In conical shells under hydrostatic pressure, as in cylindrical shells, rings
are the most efficient stiffeners, except in very short shells. A minimum-weight
analysis and optimisation analysis (for fixed number of rings) is given in
ref. 6 for uniformly spaced rings. Similar analyses for non-uniformly spaced
rings are now derived.

For the very closely spaced rings demanded by minimum-weight designs,
the sub-shell behaves as a simply-supported long plate and local buckling is
determined by

(Aa.,)= (pax  tan 1/2Eh)= Pr2h2 112(1— v2 )4 (11)

where  a,  is the length of a sub-shell. The ring spacing law that determines  a,  is

(16 = ao.)/ -v6 (12)

It should be pointed out that aco, defined as the ring spacing when .v=1, is
a mathematical parameter devoid of physical meaning, since there exists no
sub-shell whose midpoint is x=1. Substitution for  a,  in terms of aoi, in
eqn. (11),

and then
(p/E) =

[7/ 2/13X( 26 "/6(1 — v2)a tan ccaL] (13)

= ;n2113k;6-'116(1 — v2)a tan  a(p/E )]; 1 '2 (14)

where for o >0.5, k = 1 and for <0.5, k , = x2.
Since minimum-weight designs require many more rings than feasible in

practice, more realistic optimal configurations can be obtained if the number
of rings is specified as a practical restraint. The ring-spacing is then no
longer small enough to ensure 'plate behaviour' and the sub-shells are short
conical shells, considered simply-supported, whose buckling is determined"' by

(pl E) = 0.92(fia,/a6)(h/fi„„)2•5g(ip) (15)

and due to shortness of the sub-shells g(i/J): I. Hence



Josef Singer and Alenahem Baruch 773

aoo = 0.92h2.502'  .5)4(a tan 7)1.5(plE)]} (16)

where for 6> 1.5, k2= 1 and for 6 <1-5, k2= x2. It should be pointed out that
eqns. (14) and (16) represent straight line conservative approximations to the
actual curve of critical pressure against shell geometry, adopted for con-
venience of calculation in a manner similar to refs. 8 and 6.

For estimation of their local instability, the rings are represented by an
infinite narrow plate simply-supported on one long side and free on the other,
as in refs. 6 and 8, or, alternatively clamped on one long side and free on the
other. The stress applied to the ring is computed with the assumption that
rings and shell share the external load according to their cross-sectional area.
For ring buckling to occur first, the shell must still be unbuckled and the skin
will hence carry at least the part of the load proportional to its cross-sectional
area. If the membrane stress distribution is unequal, due to wider ring
spacing, the skin will carry a larger portion of the load and the rings a smaller
load. The assumption of area-proportional load sharing is therefore at
most conservative here. Hence

(a4,1E),-= [k3g2/12(1 — v2)](e/d)2 = {pax tan 7/[Eh( 1 + dcx6la0h) ]} (17)

and then for v=0.3

(to/ = 0-904k3(c/d)2(h/a )[ 1 + (dckl/a06h )]( 1/k4 tan 7) (18)

where k3= 0-5 for simple-supports at one side, and 1 c3= 1-33 for one side
clamped , k4 can take any value between 1 and x2. The correct value for k,
is that that minimises (la), in eqn. (18).

The general instability is computed with the approximate formula of ref. 12

(plE)„ = 0.92(p0r//)( h/Pad2•5[(1+ii26.0°.75—(pa,,11)(hIp„,)"q2,j1g(0'-'3'
(19)

which neglects the eccentricity of the rings. Since the main aim of the present
study is a comparison of the structural efficiency of non-uniformly spaced
rings with that of uniformly spaced rings, and the eccentricity effects are
approximately the same for both types of stiffening, the neglect of the
eccentricity is not detrimental here.

The effective mean bending stiffness of the rings is represented by

n„ = 0-91(claw)(0)3+{3[(d/h)+1]2/[e+ ( -1a0,h1cd)]} (20)

and the equivalent thickness of the stiffened shell h (the thickness of an
unstiffened conical shell of identical weight) is given by

h = h1+(cdiao,h)[2(x2  (2 +6)--I )/(2 6)(x22- I )] I (21)

The investigation includes a minimum weight analysis as well as several
optimisation studies with specified numbers of rings for uniform spacing. The
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calculations were performed in the following manner: A value for  h,  the shell

wall thickness, is chosen and with eqns. (14) or (16) the required basic spacing

a0,,  is computed for various ring-distribution factors o. Then ph, is computed
from eqn. (19) and the width of the ring  c  and its heieht  d  are found from

eqns. (18) and (20). Finally the equivalent thickness of the stiffened shell is

computed from eqn. (21).
The number of rings for non-uniform spacing can be found from the ring

spacing law, eqn. (12). For hydrostatic pressure loading, comparison with
uniformly spaced stiffening is based on the sub-shell with the largest mean

radius of curvature. When the rine spacing varies according to eqn. (12), the

length of this sub-shell is

	

= ao6i X2  - Ba,5)„,/r2]} 6 (22)

Equation (12) can be expressed as a difference equation (see also Fig. 1)

(16 —  aGn + — ia06:[12(`.,n+ (23)

where a.:;-"„ is the distance along the generator from the vertex to the pith ring

the boundary values of are

= I and ,,TN+I = X2 (24)

and N is the total number of rings.
The number of rings for non-uniform spacing, or ow for a given  N.  can be

alternatively also calculated from a formula, obtained with a simple kinematic

analogue (see also section 4 of ref. 26),

N = [a(x-'2+ — 1 )1a06( +1)]—  1 (25)

where  N  has to be rounded off to the nearest higher integer. The analogue is

that of a body moving along the generator of the cone with a varying velocity.

The velocity varies in such a manner that the body traverses the distance
between any two rings,  a6,  in a constant time. The total time divided by the

constant time in which  a6  is traversed gives the number of bays (or number of

rings plus one).

In section 4 of ref. 26 results are presented for various geometries and loads.

Here only results for one shell, subjected to a pressure  (p/ E)=1•2  x 10, and
for three different ring distribution factors Ô=0, 0-5, 1-5, are shown in
Fig. 13. The equivalent thickness of the stiffened shell which represents the

total weight is plotted against the number of rings N. A discontinuity in slope

appears in all the curves of Fie. 13. This discontinuity is caused by transition

from 'plate behaviour' of sub-shells to 'shell behaviour'. For very small ring-

spacing (large number of rings) at the right of Fig. 13 'plate behaviour' is

appropriate and eqn. (14) applies. As the ring-spacing increases towards the

left of Fig. 13, the sub-shells have to be considered as conical shells and

eqn. (16) applies. With increasing number of rings, or diminishing ring-
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FIG. 13 — Optimisation of conical shells with non-uniformly spaced rings

under hydrostatic pressure

spacing, the discontinuity is the point where the curves computed from
eqns. (16) and (14) intersect, and to the right of which the approximate shell
buckling formula, eqn. (16), is more conservative than the 'plate behaviour'
approximation, which itself is slightly conservative. If the actual curve for the
critical pressure of the sub-shells were used, no discontinuities would appear
in Fig. 13.

One may note that for (5=1.5 the transition occurs at an N beyond the
minimum weight and is hence of no interest. For 6=0 and 6=1-5 the com-
putations were made with rings taken as a simply-supported – free plate
(k3=0.5) and as a clamped – free plate (k 3= 1.33). Obviously the non-
conservative clamped – free assumption yields smaller weights, but the
differences are seen to be small, particularly in the practical range of N.
Fig. 13 indicates that for minimum-weight design, 6=0.5 results in the
most efficient structure. This is not surprising since the minimum weight
configuration has very small ring-spacing with corresponding 'plate be-
haviour'. In the 'plate regime' sub-shells of equal local stiffness are obtained
with (5=0.5, and hence this ring distribution is most efficient. The minimum-
weight configurations, however, are not practical due to the large number of
rings required, as mentioned earlier. In the optimal design region with a
reasonable predetermined number of rings, 6=1.5 results in a more efficient
structure, since in the 'shell regime' 6=1.5 yields sub-shells of equal local
stiffness.
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Whereas in the minimum-weight design region only small weight savings
are possible with unequal ring-spacing (5-6 %), considerable savings may be
obtained in more practical configurations. For example, with N=11 the shell
considered in Fig. 13 is 27 % lighter with non-uniform ring-spacing (6 =1.5)
than with uniform spacing (6= 0). Or, if one aims at a reduction of manu-
facturing costs rather than weight saving, less rings are needed with varying
ring-spacing. As an example, for h= 0.106 inches in Fig. 13, 11 rings are needed
with (5=1.5 whereas with (5= 0, 21 rings would be required.

Since the general instability pressure is calculated in this section with an
approximate formula, eqn. (19), that neglects the eccentricity of the rings, the
general instability pressure of some points in Fig. 13 has been recalculated
with the more exact method of ref. 12. The differences in pressure are found
to be small for inside rings, less than 6 % in all cases, and only slightly larger
for outside rings, 3-12 %. One should also remember that a difference of say,
10 % in critical pressure corresponds to a weight difference of less than 2 %.

7. STRUCTURAL EFFICIENCY OF ORTHOTROPIC SHELLS

Though in general orthotropic shells are less efficient than geometrically
stiffened ones in their resistance to buckling, they may be optimal under
certain conditions. Earlier studies of cylindrical shells, for example ref. 35,
predicted considerable weight savings with orthotropic construction under
external pressure and axial compression, especially for circumferential
strengthening. More recent optimisation studies for orthotropic shells""
show that under axial loads these predictions are not borne out and that,
within the framework of linear theory, isotropic cylinders are more efficient
in axial compression. The actual buckling loads realised in practice will,
however, be larger in circumferentially stiffened orthotropic cylindrical shells
than in corresponding isotropic ones, on account of the more stable post-
buckling behaviour of circumferentially stiffened cy1inders(24). Since in
glass fibre reinforced plastics the stiffness can be orientated in preferential
directions without change in weight, orthotropic configurations may be
advantageous in practice even under axial compression.

The weight savings predicted for cylindrical shells under lateral or hydro-
static pressure in ref. 35 have not been disputed. Recent theoretical work on
orthotropic conical shells37) (later confirmed experimentally(")) also pre-
dicts noticeable weight savings under hydrostatic pressure. An example for
commercially available glass fibre reinforced epoxy resins yielded there 9`)/0
weight savings with circumferential stiffening. In orthotropic conical shells
under torsion"" larger weight savings are possible and examples computed
for commercially available glass fibre reinforced epoxy resins yielded weight
savings of up to 15 %.



Josef Singer and MenahernBaruch 777

One can extrapolate the conclusions arrived at earlier for ring-stiffened
cylindrical shells with non-uniform rings, to orthotropic shells whose cir-
cumferential stiffness varies with .v. Non-uniform orthotropy could be
obtained in practice in fibrous composite shells and would yield noticeable
weight savings.

8. DISCRETE STIFFENERS

In the present paper, as in most general instability analyses of stiffened
shells, the stiffeners are assumed to be distributed over the entire shell. On
physical grounds this assumption appears reasonable for shells with many
closely spaced stiffeners. In the case of ring-stiffened cylindrical shells under
external pressure it has been shown to be valid even for small number of rings,
except when there is only one central ring'39); and for axisymmetric buckling
under axial compression, the error in 'smearing' the rings was found less than
5 except when the number of rings per longitudinal half wave was less than
2("). The large eccentricity effects found recently in stiffened shells and the
desirability of variation of stiffener cross-section along the shell motivated a
closer look at the discretely stiffened shell. Preliminary results obtained by
one of our graduate students, R. Haftka, seem to confirm that for cylindrical
shells under hydrostatic pressure, even with large eccentricities, discreteness
of stiffeners is of practical importance only when their number is small. For
a typical uniformly ring-stiffened cylindrical shell with  (LI R)= 1.0,
(RIM  = 2000, (A2I ah)=OE5, (1221a0)= 5 and (e2111)=5, the error introduced
by 'smearing' the rings was found to be 16 “0 for 2 rings; 7.5 "O for 3 rings and
less than 0-05 "„ when there are 4 or more rings.

ACKNOWLEDGMENT

The authors wish to express their gratitude to Mr. O. Harari for helpful
discussions, checking of derivations and assistance with programmine, and
also to Mr. E. Glinert and the Technion Computing Center for their valuable
help.

The work was sponsored by the Air Force Office of Scientific Research
OAR under Grant A F EOAR 63-58 and contract A F 61(652)-905 through
the European Office of Aerospace Research, USAF.

REFERENCES

( ) GERARD, G., 'Optimum structural design concepts for aerospace vehicles,'
Journal of Spacecraft and Rockets, 3, No. 1,5-18,1966.

2C



778 Aerospace Proceedings 1966

ABRAHAM, L. H., Lowy, M. J., 'Shell instability as related to design,' Collected
Papers on Instability of Shell Structures — 1962, NASA TN D-I510, December
1962, pp. 1-9.
ROSEN, B. W., Dow, N. F., 'Influence of constituent properties upon the
structural efficiency of fibrous composite shells,' Presented at the AIAA Sixth
Structures and Materials Conference, Palm Springs, April 1965.
SHANLEY, F. R., Weight-Strength Analysis of Aircraft Structures, McGraw-Hill
Book Co., Inc., New York, 1952, pp. 40-52; and Dover Publications, Inc.,
New York, 1960.
GERARD, G., 'Minimum weight design of ring stiffened cylinders under
external pressure,' Journal of Ship Research,  5, 44-49,1961.
BURNS, A. B., 'The minimum-weight analysis of ring-stiffened conical shells
subjected to uniform external hydrostatic pressure,' LMSC-2-60-64-30,
Lockheed Missile and Space Company, Sunnyvale, California, July 1964 (to
be published in Journal of Spacecraft and Rockets).
CRAWFORD, R. F., BURNS, A. B., 'Minimum weight potentials for stiffened
plates and shells,' A IA A Journal,l, 879-886,1963.
NICKELL, E.  H., CRAWFORD, R. F., 'Optimum ring-stiffened cylinders subjected
to a uniform hydrostatic pressure,' Society of Automotive Engineers Preprint
578F(1962). Also LMSC-6-90-62-57, Lockheed Missile and Space Company,
Sunnyvale, California, 1962.
BURNS, A.  B., ALMROTH, B. O., 'Structural optimization of axially compressed,
ring-stringer stiffened cylinders,' Journal of Spacecraft and Rockets, 3, No. 1,
19-25,1966.
BURNS, A. B., SKOGFI, J., 'Combined loads minimum weight analysis of stiffened
plates and shells,' Journal of Spacecraft and Rockets, 3, No. 2,235-240,1966.

(I I) BURNS, A. B., Structural optimization of axially compressed cylinders, con-
sidering ring-stringe reccentricity clkcts,' to be published in Journal of Spacecraft
and Rockets.
BARUCH, M., SINGER, J., HARARI, O., 'General instability of conical shells with
non-uniformly spaced stiffeners under hydrostatic pressure.' Proceedings of
the 7th Israel Annual Conference on Aviation and Astronautics, Israel Journal
of Technology, 3, No. I, 62-71 (1965). Also TAE Report 37, Technion Research
and Development Foundation, Haifa, Israel, December 1964.
BARUCH, M., SINGER, J., WELLER, T., 'Effect of eccentricity of stiffeners on
the general instability of cylindrical shells under torsion.' Proceedings of the
8th Israel Annual Conference on Aviation and Astronautics, Israel Journal of
Technology,  4, No. 1,144-154 (1966). Also TAE Report 43, Technion Research
and Development Foundation, Haifa, Israel, August 1965.
SINGER, J., BARUCH, M., HARARI, O., 'On the stability of eccentrically stiffened
cylindrical shells under axial compression,' TAE Report 44, Technion Research
and Development Foundation, Haifa, Israel, December 1965. To be published
in International Journal of Solids and Structures.
SINGER, J., 'On the buckling of unstiffened orthotropic and stiffened conical
shells,' Presented at the 7th Congres International Aeronautique, Paris,
June  1965.
VAN DER NEUT, A., 'The general instability of stiffened cylindrical shells under
axial compression, Report S-3I4, National Luchtvaartlaboratorium, Amster-
dam, Report and Transactions, 13, S.57-84,1947.
MECK, H. R., 'A survey of methods of stability analysis of ring stiffened
cylinders under hydrostatic pressure,' Transaction of ASME, 87, B  (Journal
of Engineering for Industry), No. 3,385-390,1965.



Josef Singer and Menaheni Baruch 779

SINGER, J., BARUCH, M., HARARI, O., 'Further remarks on the effect of
eccentricity of stiffeners on the general instability of stiffened cylindrical shells,'
Journal of Mechanical Engineering Science, 8, No. 4, 363-373, 1966. Also TAE
Report 42 (revised), Technion Research and Development Foundation, Haifa,
Israel, August 1965.
HOFF, N. J., 'The perplexing behavior of thin circular cylindrical shells in axial
compression,' Proceedings of the 8th Israel Annual Conference on Aviation
and Astronautics, Israel Journal of Technology, 4, No. 1, 1-28, 1966.
GERARD, G., 'Elastic and plastic stability of orthotropic cylinders,' Collected
Papers on Instability of Shell Structures —1962, NASA TN D-1510, pp. 277-
296, December 1962.
MILLIGAN, R., GERARD, G., LAKSHMIKANTHAM, C., BECKER, H., 'General
instability of orthotropically stiffened cylinder under axial compression,'
AMA Journal, 4, No. 11, 1906-13, 1966. Also Report AFFDL-TR-65-161
Air Force Flight Dynamics Laboratory, USAF, Wright Patterson Air Force
Base, Ohio, July 1965.
CARD, M. F., 'Preliminary results of compression tests on cylinders with
eccentric longitudinal stiffeners,' NASA TMX-I004, September 1964.
BUDIANSKY, B., HUTCHINSON, J., 'A survey of some buckling problems,'
A IA A Journal, 4, No. 9, 1505-10, 1966.
THIELEMANN, W. F., 'New developments in the nonlinear theories of the
buckling of cylindrical shells,' Aeronautics and Astronautics, Proceedings of
the Durand Centennial Conference 1959, pp. 76-119, Pergamon Press,
Oxford, 1960.
BARUCH, M., SINGER, J., 'Effect of eccentricity of stiffeners on the general
instability of stiffened cylindrical shells under hydrostatic pressure,' Journal of
Mechanical Engineering Science, 5, No. I, 23-27 (1963).
SINGER, J., BERKOVITS, A., WELLER, T., ISM!, O., BARUCH, M., HARARI, O.,
'Experimental and theoretical studies on buckling of conical and cylindrical
shells under combined loading,' TAE Report 48, Technion Research and
Development Foundation, Haifa, Israel, June 1966.
SINGER, J., 'Comment on a theoretical interaction equation for the buckling of
circular shells under axial compression and external pressure,' AIAA Journal,
2, No. 2, 410-411, 1964.
HARAR1, O., SINGER, J., BARUCH, M., 'General instability of cylindrical shells
with non-uniform stiffeners,' TA E Report 51, Technion Research and Develop-
ment Foundation, Haifa, Israel, August 1966.
BARUCH, M., SINGER, J., 'General instability of stiffened circular conical shells
under hydrostatic pressure,' The Aeronautical Quarterly, 26, Part 2, 187-204,
1965.
VON SANDEN, K., TOLKE, F., 'Uber Stabilitdtsprobleme &inner Kreisyzlin-
drischer Schalen,' Ingenieur Archiv, 3, 24-66, 1932.

REYNOLDS, T. E., 'Elastic lobar buckling of ring-supported cylindrical shells
under hydrostatic pressure,' David Taylor Model Basin Report 1614, Sep-
tember 1962.
STEIN, M., 'The effect on the buckling of perfect cylinders of prebuckling de-
formations and stresses induced by edge support,' Collected Papers On
Instability of Shell Structures — 1962, NASA TN D-1510, pp. 217-227,
December 1962.
BATDORF, S. B., 'A simplified method for elastic stability analysis for thin
cylindrical shells,' NACA Report 874, March 1947.
SEIDE, P., 'On the buckling of truncated conical shells under uniform hydro-



780 Aerospace Proceedings 1966

static pressure,' Proc. IUTAM Symposium on the Theory of Thin Elastic Shells,

Delft  1959,pp. 363-388, North-Holland Publishing Company, Amsterdam, 1960.
HESS, T. E., 'Stability of orthotropic cylindrical shells under combined loading,'

A RS Journal,  31, No. 2, 237-246, 1961.
Dow, N. F., ROSEN, B. W., 'Structural efficiency of orthotropic cylindrical

shells subjected to axial compression,' A IA A Journal,  4, No. 3, 481-485, 1966.
SINGER, J., FERSHT-SCHER, R., 'Buckling of orthotropic conical shells under

external pressure,' The Aeronautical Quarterly,  15, Part 2, 151, 1964.
SINGER, J., FERSHT-SCHER, R., BETSER,A., 'Buckling of orthotropic conical
shells under combined torsion and external or internal pressure,' Proceedings

of the 6th Israel Annual Conference on Aviation and Astronautics, Israel
Journal of Technology,  2, No.1, 179–I 89, 1964.
MOE, J., 'Stability of rib-reinforced cylindrical shells under lateral pressures

"Publications"; International Association fbr Bridge and Structural Engineering,
18,  113-136, 1958.
VAN DER NEUT, A., 'General instability of orthogonally stiffened cylindrical

shells,' Collected Papers on Instability of Shell Structures — 1962, pp. 309-319,
NASA TN D-1510, 1962.

DISCUSSION

Prof. Elmer (University of Aachen, DVL, 51 Aachen, Templergraben 55):


Zunächst mochte ich Herrn Prot'. Singer und seinem Mitarbeiter zu der

hervorragenden Arbeit beglückwünschen. Ich habe nun einige Fragen über

die theoretischen Annahmen:

I. EXZENTRIZIT:; T

In der vorgetragenen und in früheren Arbeiten der Verfasser wird der

Einfiu B exzentrischer Versteifungen nur durch die Abstände e1 und e2 der

Neutralflächen für Biegung der Zylinderschale in Langs- und Umfangs-




richtung von einer Bezugsfläche berücksichtigt. In einer deutschen Arbeit


von Geier (WGL-Jahrbuch 1965, S. 440) werden unter der Annahme von

elastischen Schichten aus den Koppelgliedern eines Elastizitätsgesetzes für


die orthotrope Schale noch zwei weitere Exzentrizitäten e 1 2 und e2 abgeleitet

welche die Abstände der Neutralflächen für die Schub- und Drillbean-

spruchung darstellen sollen. Da mir die physikalische Bedeutung dieser


Grof3en nicht klar ist, hätte ich gerne gewuBt, ob die Verfasser des Vortrags

hierfür eine Erklärung geben können und ob die Vernachlüssigung dieser

GroBen in der vorliegenden Arbeit einen EinfluB hat?

2. VERSCHMIEREN

Die Grundlage für die vorliegende und andere theoretische Untersuchun-

gen ist die Annahme, da B die Steifigkeiten der Ringe und Stringer auf die

Schalenfläche 'verschmiert' werden dürfen. Bei Winner Haut und starken


Versteifungen, besonders wenn diese in groBen Abstünden liegen, ist diese


Annahme nicht mehr zulässig, weil die Haut dann vorher zwischen den

Versteifungen ausbeult und eine Spannungsumlagerung stattfindet. Ich würe


dankbar, wenn der Vortragendeangeben könnte, bis zu welchen Grenzen

eine 'Verschmierung' vorgenommen werden darf.
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3. HISTORIE
Zum SchluI3 möchte ich noch darauf hinweisen, dafi der Einfiul3 exzen-

trisch angeordneter Versteifungen auf die Beullast von Zylinderschalen bei
achsialer und hydrostatischer Beanspruchung schon 1932 von Flügge in
einer Arbeit in der Zeitschrift lngenieurarchiv' untersucht wurde.

Prof. Singer and Mr. Baruch: The authors are grateful to Prof. Ebner for
pointing out to them the early contribution of Prof. Fltigge, which they had
overlooked. In his 1932 paper, Prof. Flügge did indeed point out that the
eccentricity of rings may be important. However, only one ring-stiffened shell
was considered there, and the buckling mode with many longitudinal waves  
that may reduce the critical load appreciably even for combinations of axial
load and external pressure — was not taken into account there. Stringers, that
are of equal importance, were not considered by Fliigge in his calculations.

The recent work of Geiert mentioned by Professor Ebner differs from the
earlier and present work of the authors in the assumed mathematical model.
Geier replaces the stiffeners of the stiffened shell by a concentric orthotropic
continuous layer, whereas the authors 'smear' the stiffeners to form a cut
layer. For example, external rings are replaced in Geier's work by an ortho-
tropic outer shell, whereas the authors replace them by a large number of
parallel rings that cover the whole shell and touch each other, but are not
connected to each other. The bending stiffness of Geier's layer and the
smeared rings assumed by the authors is identical, but their torsional stiff-
ness differs. Geier's model considerably over-estimates the torsional stiffness
on account of the continuity of his layer that does not represent the rings
correctly, whereas the model assumed by the authors slightly under-estimates
the torsional stiffness. The authors feel, therefore, that their direct approach
of stiffness distribution — computation of stiffnesses before 'smearing' them

is more realistic.
Earlier work by other investigators and the preliminary results obtained

from the linear analysis with discrete stiffeners, indicate that within the
framework of linear theory 'smearing' introduces only a negligible error,
except when the number of stiffeners is very small. Experiments (see refs. 21,
22 and 26 of the paper) show that linear theory is adequate even for axial
compression, provided the stiffeners are very closely spaced. With increase in
stiffener spacing, however, the agreement between experiment and theory
ceases to be satisfactory in this case (see ref. 15 of the paper and recent work
by Katz at NASA-.). Hence it appears that 'smearing' is justified as long as
linear theory is applicable. The investigation of discretely stiffened shells in

TGEIER, B.,  Das Beulverhalten versteifier Zylinderschalen, Teil 1: Difierential -
gleichungen, Zeitschrifi fir Flugwissenscharten, 14, No. 7, pp. 306-323, July 1966.

KATZ, L., 'Compression Tests on Integrally Stiffened Cylinders,' NASA
TM  X-533I5, August 1965.
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progress at the Technion aims at a more precise qualification of this statement.
As more experimental evidence becomes available, the bounds of validity

of linear theory for stiffened shells will become clearer. At present the authors

feel that these bounds cannot yet be specified with certainty.

A. van der Neut (Technological University, Delft, Kluyverweg 1, Delft,
Netherlands): Mr. Chairman, First of all I should like to express my admira-
tion for the thoroughness and extent of the work of the two authors.

In reply to Prof. Ebner's question whether post-buckling behaviour of skin
panels can be taken into account I might make the comment that my early
work dealt with just this case, since it was meant to apply to fuselage shells.
For the same reason I considered at that time the favourable effect of outside
eccentricity to be a useless by-product of my investigation, and the unfavour-

able effect of inside eccentricity to be the real product.
have a question to put forward. In view of the possibility of the longi-

tudinal wave length being a small multiple of the frame spacing, after having

investigated the continuous structure ( smeared-our stiffening), I studied the

problem of  discrete  frames at constant spacing for the infinitely long cylinder.
The differences with the continuous structure proved to be insignificant
except for average half-wave lengths smaller than 1.5 or 2 times the frame
spacing. However this problem contains an effect which puzzles me still :

The tangential membrane stresses due to buckling put radial load upon the
longitudinals and deflect them, thereby reducing the membrane stresses and
consequently the effectivity of the skin in stabilising the structure. So far I
have not been able to include this effect in the analytical solution for the
infinitely long  cylinder and I would like to know whether the authors have
included it.

Prof Singer and Mr. Baruch:  The authors would like to thank Professor van

der Neut for his comments. Professor van der Neut's work on eccentrically
stiffened cylinders has been an encouragement to them in their efforts.

The effect of reduction of the membrane stresses due to the deflection of

longitudinals caused by these membrane stresses is essentially a non-linear
effect of the panel between discrete stiffeners. The effect is non-linear since

the membrane stresses causing it will change only after a large deflection of
the longitudinals has changed the geometry. Hence it is not included in the
linear analysis presented.




